DT		
РΓ	1.).	
1 I.	$\boldsymbol{\nu}$.	

Last Name, First Name:

Section: _

Midterm II Math 20E, UCSD, Winter 2018 Thursday, March 1st, 3:30pm-4:50pm Instructor: Eddie Aamari

- Write your PID, Name and Section in the spaces provided above.
- <u>Do not</u> unstaple the pages.
- Write your solutions clearly in the spaces provided.
- Answers written outside the answer boxes will not be graded.
- No calculators or other electronic devices are allowed during this exam.
- Put away (and silence!) your cell phone and other devices that can be used for communication or can access the Internet.
- Show all of your work; no credit will be given for unsupported answers.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

Exercise	Ι	II	III	IV	V	Total
Points	5	5	5	5	5	25

Exercise I (5 points)

A helical wire follows the path $\mathbf{c}(t) = (3\cos(t), 3\sin(t), 4t)$ for $0 \le t \le 5\pi$. Its mass density m (mass per unit length) is given by m(x, y, z) = 2z. Find the mass of the wire.

Exercise II (5 points)

Let S be the parabolic surface given by $z = 9 - x^2 - y^2$ for $x^2 + y^2 \le 9$.

- 1. Find a parametrization $\Phi: D \to S$. Be sure to specify the domain D.
- 2. Use your parametrization to find a normal vector to S at the point (1, 2, 4).

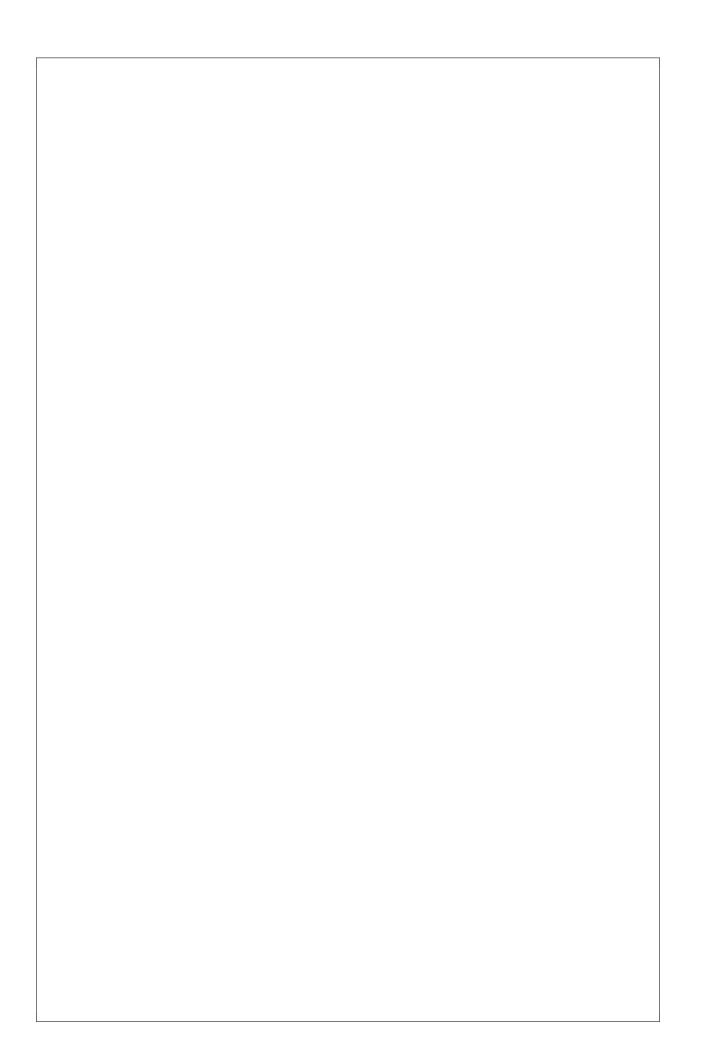
Exercise III (5 points)

Let S be the part of the paraboloid $z = x^2 + y^2$ lying between the two planes z = 1 and z = 4. Compute the surface area of S.

Exercise IV (5 points)

Let S be the upper unit hemisphere (given by $x^2 + y^2 + z^2 = 1$ and $z \ge 0$), oriented using the outward normal. Let $\mathbf{F}(x, y, z) = (y, x, z)$ be a vector field. Compute

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S}.$$



Exercise V (5 points)

The astroid curve $x^{2/3} + y^{2/3} = 1$ can be parametrized using

$$t \mapsto (\cos(t)^3, \sin(t)^3)$$
 with $0 \le t \le 2\pi$.

Use Green's theorem to compute the area it encloses. Helpful identities:

 $\cos(x)^2 = \frac{1}{2}(1 + \cos(2x)), \qquad \sin(x)^2 = \frac{1}{2}(1 - \cos(2x)), \qquad \sin(2x) = 2\sin(x)\cos(x).$

